Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2024, Volume 232, Pages 37–49
DOI: https://doi.org/10.36535/2782-4438-2024-232-37-49
(Mi into1265)
 

This article is cited in 1 scientific paper (total in 1 paper)

Classical solution of the third mixed problem for the telegraph equation with nonlinear potential

V. I. Korzyukab, J. V. Rudzkob

a Belarusian State University, Minsk
b Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
Full-text PDF (273 kB) Citations (1)
References:
DOI: https://doi.org/10.36535/2782-4438-2024-232-37-49
Abstract: For a telegraph equation with a nonlinear potential specified in the first quadrant, we consider a mixed problem with Cauchy conditions on the spatial semi-axis and a condition of the third kind (Robin's condition) on the temporal semi-axis. The solution is constructed by the method of characteristics in an implicit analytical form as a solution of some integral equations. The solvability of these equations and the dependence of their solutions on the initial data are examined. For the problem considered, the uniqueness of the solution is proved and existence conditions for classical solutions are obtained. If the matching conditions are not fulfilled, the problem with matching conditions is constructed, and if the data is not sufficiently smooth, a weak solution is constructed.
Keywords: classical solution, mixed problem, conditions of the third kind, matching conditions, nonlinear wave equation
Document Type: Article
UDC: 517.956.35
Language: Russian
Citation: V. I. Korzyuk, J. V. Rudzko, “Classical solution of the third mixed problem for the telegraph equation with nonlinear potential”, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 232, VINITI, Moscow, 2024, 37–49
Citation in format AMSBIB
\Bibitem{KorRud24}
\by V.~I.~Korzyuk, J.~V.~Rudzko
\paper Classical solution of the third mixed problem for the telegraph equation with nonlinear potential
\inbook Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2024
\vol 232
\pages 37--49
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1265}
Linking options:
  • https://www.mathnet.ru/eng/into1265
  • https://www.mathnet.ru/eng/into/v232/p37
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:181
    Full-text PDF :68
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026