Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2024, Volume 232, Pages 50–69
DOI: https://doi.org/10.36535/2782-4438-2024-232-50-69
(Mi into1266)
 

Generalized Riemann formulas for the solution of the first mixed problem for the general telegraph equation with variable coefficients in the first quadrant

F. E. Lomovtsev

Belarusian State University, Minsk
References:
DOI: https://doi.org/10.36535/2782-4438-2024-232-50-69
Abstract: Using the well-known Riemann method and a new method for compensating the boundary regime with the right-hand side of the equation, we obtain the Riemann formulas for the unique and stable classical solution of the first mixed problem for a linear general inhomogeneous telegraph equation with variable coefficients in the first quadrant. From the formulation of the mixed problem, the definition of classical solutions, and the established criterion for the smoothness of the right-hand side of the equation, we obtain a criterion of the well-posedness in the Hadamard sense. This criterion consists of smoothness requirements and three conditions for matching the right-hand side of the equation and the boundary and initial data. The validity of the Riemann formulas and the well-posedness criterion is confirmed by their coincidence with the well-known formulas of the classical solution and the well-posedness criterion for the model telegraph equation.
Keywords: first mixed problem, telegraph equation, implicit characteristic, global correctness theorem, smoothness condition, consistency condition
Funding agency Grant number
Belarusian Republican Foundation for Fundamental Research Ô22ÊÈ-001
The work was supported by the Belarusian Republican Foundation for Basic Research (project No. F22KI-001, November 5, 2021).
Document Type: Article
UDC: 517.956.32
MSC: 35A09, 35L20
Language: Russian
Citation: F. E. Lomovtsev, “Generalized Riemann formulas for the solution of the first mixed problem for the general telegraph equation with variable coefficients in the first quadrant”, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 232, VINITI, Moscow, 2024, 50–69
Citation in format AMSBIB
\Bibitem{Lom24}
\by F.~E.~Lomovtsev
\paper Generalized Riemann formulas for the solution of the first mixed problem for the general telegraph equation with variable coefficients in the first quadrant
\inbook Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2024
\vol 232
\pages 50--69
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1266}
Linking options:
  • https://www.mathnet.ru/eng/into1266
  • https://www.mathnet.ru/eng/into/v232/p50
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025