Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2024, Volume 232, Pages 89–98
DOI: https://doi.org/10.36535/2782-4438-2024-232-89-98
(Mi into1269)
 

Riemann–Hilbert-type problems for the generalized Cauchy–Riemann equation with a leading coefficient having a singularity in a circle

A. B. Rasulov, Yu. S. Fedorov, A. M. Sergeeva

National Research University "Moscow Power Engineering Institute"
References:
DOI: https://doi.org/10.36535/2782-4438-2024-232-89-98
Abstract: In this work, we construct a general solution of the generalized Cauchy-–Riemann equation whose coefficient admits a first-order singularity on a circle contained in the domain, and study a boundary-value problem that combines elements of the Riemann-–Hilbert problem and the linear conjugation problem.
Keywords: Cauchy–Riemann equations, singularity in the coefficient, Pompeiu–Vekua operator, boundary-value problem
Document Type: Article
UDC: 517.548
MSC: 30E20
Language: Russian
Citation: A. B. Rasulov, Yu. S. Fedorov, A. M. Sergeeva, “Riemann–Hilbert-type problems for the generalized Cauchy–Riemann equation with a leading coefficient having a singularity in a circle”, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 232, VINITI, Moscow, 2024, 89–98
Citation in format AMSBIB
\Bibitem{RasFedSer24}
\by A.~B.~Rasulov, Yu.~S.~Fedorov, A.~M.~Sergeeva
\paper Riemann--Hilbert-type problems for the generalized Cauchy--Riemann equation with a leading coefficient having a singularity in a circle
\inbook Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2024
\vol 232
\pages 89--98
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1269}
Linking options:
  • https://www.mathnet.ru/eng/into1269
  • https://www.mathnet.ru/eng/into/v232/p89
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :56
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026