|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2024, Volume 232, Pages 89–98 DOI: https://doi.org/10.36535/2782-4438-2024-232-89-98
(Mi into1269)
|
|
|
|
Riemann–Hilbert-type problems for the generalized Cauchy–Riemann equation with a leading coefficient having a singularity in a circle
A. B. Rasulov, Yu. S. Fedorov, A. M. Sergeeva National Research University "Moscow Power Engineering Institute"
DOI:
https://doi.org/10.36535/2782-4438-2024-232-89-98
Abstract:
In this work, we construct a general solution of the generalized Cauchy-–Riemann equation
whose coefficient admits a first-order singularity on a circle contained in the domain, and study
a boundary-value problem that combines elements of the Riemann-–Hilbert problem and the linear
conjugation problem.
Keywords:
Cauchy–Riemann equations, singularity in the coefficient, Pompeiu–Vekua operator, boundary-value problem
Citation:
A. B. Rasulov, Yu. S. Fedorov, A. M. Sergeeva, “Riemann–Hilbert-type problems for the generalized Cauchy–Riemann equation with a leading coefficient having a singularity in a circle”, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 232, VINITI, Moscow, 2024, 89–98
Linking options:
https://www.mathnet.ru/eng/into1269 https://www.mathnet.ru/eng/into/v232/p89
|
| Statistics & downloads: |
| Abstract page: | 156 | | Full-text PDF : | 56 | | References: | 57 |
|