Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2024, Volume 233, Pages 75–88
DOI: https://doi.org/10.36535/2782-4438-2024-233-75-88
(Mi into1280)
 

Logarithmic spirals in optimal control problems with control in a disk

M. I. Ronzhinaa, L. A. Manitab

a Gubkin Russian State University of Oil and Gas (National Research University), Moscow
b Moscow Institute of Electronics and Mathematics — Higher School of Economics
References:
DOI: https://doi.org/10.36535/2782-4438-2024-233-75-88
Abstract: We study a neighborhood of singular second-order extremals in optimal control problems that are affine in a two-dimensional control in a disk. We study the stabilization problem for a linear system of second-order differential equations for which the origin is a singular second-order extremal. This problem can be considered as a perturbation of an analog of the Fuller problem with two-dimensional control in a disk. We prove that for this class of problems, optimal solutions keep their form of logarithmic spirals that arrive at a singular point in a finite time, while optimal controls make an infinite number of revolutions along the circle. Finally, we present a brief review of problems whose solutions have the form of such logarithmic spirals.
Keywords: two-dimensional control in a disk, singular extremal, blow-up of a singularity, logarithmic spiral, Hamiltonian system, Pontryagin's maximum principle
Document Type: Article
UDC: 517.97
MSC: 49J15, 49N60, 34H05
Language: Russian
Citation: M. I. Ronzhina, L. A. Manita, “Logarithmic spirals in optimal control problems with control in a disk”, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 233, VINITI, Moscow, 2024, 75–88
Citation in format AMSBIB
\Bibitem{RonMan24}
\by M.~I.~Ronzhina, L.~A.~Manita
\paper Logarithmic spirals in optimal control problems with control in a disk
\inbook Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2024
\vol 233
\pages 75--88
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1280}
Linking options:
  • https://www.mathnet.ru/eng/into1280
  • https://www.mathnet.ru/eng/into/v233/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:262
    Full-text PDF :63
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026