Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2024, Volume 234, Pages 143–158
DOI: https://doi.org/10.36535/2782-4438-2024-234-143-158
(Mi into1302)
 

This article is cited in 1 scientific paper (total in 1 paper)

Hamiltonian formalism for hard and soft excitations in a plasma with a non-Abelian interaction

Yu. A. Markov, M. A. Markova, N. Yu. Markov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
Full-text PDF (308 kB) Citations (1)
References:
DOI: https://doi.org/10.36535/2782-4438-2024-234-143-158
Abstract: Hamiltonian theory for collective longitudinally polarized gluon excitations (plasmons) interacting with classical high-energy color-charged test particle propagating through a high-temperature gluon plasma is developed. A generalization of the Lie–Poisson bracket to the case of a continuous medium involving bosonic normal field variable $a^{a}_{\boldsymbol{k}}$ and a non-Abelian color charge $Q^{a}$ is performed and the corresponding Hamilton equations are derived. The canonical transformations including simultaneously both bosonic degrees of freedom of the soft collective excitations in the hot gluon plasma and the degree of freedom of a hard test particle associated with its color charge are presented. A complete system of the canonicity conditions for these transformations is obtained. An explicit form of the effective fourth-order Hamiltonian describing the elastic scattering of a plasmon off a hard color particle is found and the self-consistent system of Boltzmann-type kinetic equations taking into account the time evolution of the mean value of the color charge of this particle is obtained.
Keywords: Hamiltonian formalism, Lie–Poisson bracket, canonical transformation, special unitary group, plasmon, kinetic equation, gluon plasma
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 12104130005-1
The work was performed within the framework of the state assignment of the Ministry of Education and Science of the Russian Federation under the project “Analytical and numerical methods of mathematical physics in problems of tomography, quantum field theory, and fluid and gas mechanics” ( registration number 12104130005-1).
Document Type: Article
UDC: 517.9, 51.72
MSC: 34C14, 82D99
Language: Russian
Citation: Yu. A. Markov, M. A. Markova, N. Yu. Markov, “Hamiltonian formalism for hard and soft excitations in a plasma with a non-Abelian interaction”, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 234, VINITI, Moscow, 2024, 143–158
Citation in format AMSBIB
\Bibitem{MarMarMar24}
\by Yu.~A.~Markov, M.~A.~Markova, N.~Yu.~Markov
\paper Hamiltonian formalism for hard and soft excitations in a plasma with a non-Abelian interaction
\inbook Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications"
(DYSC 2023). Irkutsk, September 18-23, 2023
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2024
\vol 234
\pages 143--158
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1302}
Linking options:
  • https://www.mathnet.ru/eng/into1302
  • https://www.mathnet.ru/eng/into/v234/p143
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:140
    Full-text PDF :36
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026