Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2024, Volume 234, Pages 159–169
DOI: https://doi.org/10.36535/2782-4438-2024-234-159-169
(Mi into1303)
 

On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma

Yu. A. Markov, M. A. Markova, N. Yu. Markov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
References:
DOI: https://doi.org/10.36535/2782-4438-2024-234-159-169
Abstract: In this paper, we present and discuss a self-consistent system of kinetic equations of the Boltzmann type, which takes into account the time evolution of soft non-Abelian plasma excitations and the mean value of the color charge in the interaction of a high-energy color-charged particle with a plasma. Based on these equations, we examine a model problem of interaction of two infinitely narrow wave packets and obtain a system of first-order nonlinear ordinary differential equations, which governs the dynamics of interacting the colorless $N^{l}_{\mathbf \kappa}$ and color $W^{l}_{\mathbf \kappa}$ components of the density of the number collective bosonic excitations. Due to the autonomy of the right-hand sides, we reduce this system to a single nonlinear Abel differential equation of the second kind. Finally, we show that at a certain ratio between the constants involved in this nonlinear equation, one can obtain an exact solution in the parametric form.
Keywords: kinetic equation, non-Abelian plasma, wave packet, Abel equation of the second kind, Lambert function
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 12104130005-1
The work was performed within the framework of the state assignment of the Ministry of Education and Science of the Russian Federation under the project “Analytical and numerical methods of mathematical physics in problems of tomography, quantum field theory, and fluid and gas mechanics” ( registration number 12104130005-1).
Document Type: Article
UDC: 517.923
MSC: 34C14
Language: Russian
Citation: Yu. A. Markov, M. A. Markova, N. Yu. Markov, “On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma”, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 234, VINITI, Moscow, 2024, 159–169
Citation in format AMSBIB
\Bibitem{MarMarMar24}
\by Yu.~A.~Markov, M.~A.~Markova, N.~Yu.~Markov
\paper On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma
\inbook Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications"
(DYSC 2023). Irkutsk, September 18-23, 2023
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2024
\vol 234
\pages 159--169
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1303}
Linking options:
  • https://www.mathnet.ru/eng/into1303
  • https://www.mathnet.ru/eng/into/v234/p159
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:90
    Full-text PDF :42
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025