Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2024, Volume 235, Pages 40–56
DOI: https://doi.org/10.36535/2782-4438-2024-235-40-56
(Mi into1307)
 

Classical solution of a mixed problem with the Dirichlet and Neumann conditions for a nonlinear biwave equation

V. I. Korzyukab, J. V. Rudzkob

a Belarusian State University, Minsk
b Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
References:
DOI: https://doi.org/10.36535/2782-4438-2024-235-40-56
Abstract: For a nonlinear biwave equation given in the first quadrant, we consider a mixed problem in which the Cauchy conditions are specified on the spatial half-line, and the Dirichlet and Neumann conditions are specified on the time half-line. The solution is constructed by the method of characteristics in an implicit analytical form as a solution of a certain integro-differential equations. By the method of continuation with respect to a parameter and a priori estimates, the solvability of these equations, the dependence on the initial data, and the smoothness of solutions are examined. For the problem considered, the uniqueness of the solution is proved and the conditions of the existence of classical solution are established. If the matching conditions are not met, then a problem with conjugation conditions is constructed, and if the data is not sufficiently smooth, then a mild solution is constructed.
Keywords: classical solution, mixed problem, matching conditions, method of characteristics, nonlinear biwave equation
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
This work was supported by the Russian Ministry of Education and Science as a part of the Moscow Moscow Center for Fundamental and Applied Mathematics (project No. 075-15-2022-284).
Document Type: Article
UDC: 517.956.35
Language: Russian
Citation: V. I. Korzyuk, J. V. Rudzko, “Classical solution of a mixed problem with the Dirichlet and Neumann conditions for a nonlinear biwave equation”, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 235, VINITI, Moscow, 2024, 40–56
Citation in format AMSBIB
\Bibitem{KorRud24}
\by V.~I.~Korzyuk, J.~V.~Rudzko
\paper Classical solution of a~mixed problem with the Dirichlet and Neumann conditions for a nonlinear biwave equation
\inbook Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2024
\vol 235
\pages 40--56
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1307}
Linking options:
  • https://www.mathnet.ru/eng/into1307
  • https://www.mathnet.ru/eng/into/v235/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025