Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2024, Volume 235, Pages 57–67
DOI: https://doi.org/10.36535/2782-4438-2024-235-57-67
(Mi into1308)
 

Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation

V. G. Kurbatov, E. D. Khoroshikh, V. Yu. Chursin

Voronezh State University
References:
DOI: https://doi.org/10.36535/2782-4438-2024-235-57-67
Abstract: We consider the equation $\ddot x(t)=Ax(t)+f(t)$, $t\in\mathbb{R}$, with the matrix coefficient $A$. This equation has a unique solution $x$, which is bounded on $\mathbb{R}$, for any continuous bounded inhomogeneity $f$ if and only if the spectrum of the matrix $A$ does not intersect the semi-axis $\mathbb{R}_-=\{z\in\mathbb{R}: z\le0\}$. In this case, the solution $x$ is defined by the formula
\begin{equation*} x(t)=\int_{-\infty}^{+\infty}G(t-s)f(s)\,ds, \quad G(t)=-\frac12 e^{-\sqrt{A}|t|}(\sqrt{A})^{-1}. \end{equation*}
We discuss the problem of approximate calculation of Green's function $G(t)$ using its expansion into Laguerre's series. The scale parameter $\tau$ in Laguerre's polynomials is chosen to ensure the highest accuracy.
Keywords: Laguerre's polynomials, orthogonal series, Green's function, bounded solutions problem, optimization, scale parameter
Document Type: Article
UDC: 517.587, 519.622
MSC: 65F60, 33C45, 97N50
Language: Russian
Citation: V. G. Kurbatov, E. D. Khoroshikh, V. Yu. Chursin, “Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation”, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 235, VINITI, Moscow, 2024, 57–67
Citation in format AMSBIB
\Bibitem{KurKhoChu24}
\by V.~G.~Kurbatov, E.~D.~Khoroshikh, V.~Yu.~Chursin
\paper Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation
\inbook Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2024
\vol 235
\pages 57--67
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1308}
Linking options:
  • https://www.mathnet.ru/eng/into1308
  • https://www.mathnet.ru/eng/into/v235/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025