|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2024, Volume 235, Pages 57–67 DOI: https://doi.org/10.36535/2782-4438-2024-235-57-67
(Mi into1308)
|
|
|
|
Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation
V. G. Kurbatov, E. D. Khoroshikh, V. Yu. Chursin Voronezh State University
DOI:
https://doi.org/10.36535/2782-4438-2024-235-57-67
Abstract:
We consider the equation $\ddot x(t)=Ax(t)+f(t)$, $t\in\mathbb{R}$, with the matrix coefficient $A$. This equation has a unique solution $x$, which is bounded on $\mathbb{R}$, for any continuous bounded inhomogeneity $f$ if and only if the spectrum of the matrix $A$ does not intersect the semi-axis $\mathbb{R}_-=\{z\in\mathbb{R}: z\le0\}$. In this case, the solution $x$ is defined by the formula
\begin{equation*}
x(t)=\int_{-\infty}^{+\infty}G(t-s)f(s)\,ds, \quad
G(t)=-\frac12 e^{-\sqrt{A}|t|}(\sqrt{A})^{-1}.
\end{equation*}
We discuss the problem of approximate calculation of Green's function $G(t)$ using its expansion into Laguerre's series. The scale parameter $\tau$ in Laguerre's polynomials is chosen to ensure the highest accuracy.
Keywords:
Laguerre's polynomials, orthogonal series, Green's function, bounded solutions problem, optimization, scale parameter
Citation:
V. G. Kurbatov, E. D. Khoroshikh, V. Yu. Chursin, “Applying Laguerre's function for approximate calculation of Green's function of a second-order differential equation”, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 235, VINITI, Moscow, 2024, 57–67
Linking options:
https://www.mathnet.ru/eng/into1308 https://www.mathnet.ru/eng/into/v235/p57
|
|