Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2024, Volume 237, Pages 76–86
DOI: https://doi.org/10.36535/2782-4438-2024-237-76-86
(Mi into1325)
 

This article is cited in 1 scientific paper (total in 1 paper)

Training a neural network for a hyperbolic equation by using a quasiclassical functional

S. G. Shorokhov

Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow
Full-text PDF (331 kB) Citations (1)
References:
DOI: https://doi.org/10.36535/2782-4438-2024-237-76-86
Abstract: We study the problem of constructing a loss functional based on the quasiclassical variational principle for training a neural network, which approximates solutions of a hyperbolic equation. Using the method of symmetrizing operator proposed by V. M. Shalov, for the second-order hyperbolic equation, we construct a variational functional of the boundary-value problem, which involves integrals over the domain of the boundary-value problem and a segment of the boundary, depending on first-order derivatives of the unknown function. We demonstrate that the neural network approximating the solution of the boundary-value problem considered can be trained by using the constructed variational functional.
Keywords: variational principle, hyperbolic equation, neural network, loss functional
Document Type: Article
UDC: 517.972.7, 004.032.26
MSC: 35A15, 68T07
Language: Russian
Citation: S. G. Shorokhov, “Training a neural network for a hyperbolic equation by using a quasiclassical functional”, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 237, VINITI, Moscow, 2024, 76–86
Citation in format AMSBIB
\Bibitem{Sho24}
\by S.~G.~Shorokhov
\paper Training a neural network for a hyperbolic equation by using a quasiclassical functional
\inbook Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2024
\vol 237
\pages 76--86
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1325}
Linking options:
  • https://www.mathnet.ru/eng/into1325
  • https://www.mathnet.ru/eng/into/v237/p76
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025