|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2025, Volume 240, Pages 29–38 DOI: https://doi.org/10.36535/2782-4438-2025-240-29-38
(Mi into1342)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Classical scattering matrix for hard and soft excitations in a plasma with non-abelian interaction
Yu. A. Markov, M. A. Markova, N. Yu. Markov Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
DOI:
https://doi.org/10.36535/2782-4438-2025-240-29-38
Abstract:
Within the framework of the Zakharov–Shulman approach, we determine the classical scattering matrix for the simplest process of interaction between hard and soft excitations in a quark-gluon plasma. Calculations are performed in close analogy with the methods of quantum field theory, with the replacement of the quantum commutator of quantum field operators by the so-called Lie–Poisson bracket of classical variables. The classical $\mathcal{S}$-matrix is determined in the form of the most general integro-power series in asymptotic values of the normal bosonic variables $c^{a}_{\boldsymbol{k}}(t)$ and $c^{\ast a}_{\boldsymbol{k}}(t)$ describing the soft gluon excitations of the system and the color charge $\mathcal{Q}^{a}(t)$ of the hard particle at $t\rightarrow\infty$. The first nontrivial contribution to the given $\mathcal{S}$-matrix is obtained.
Keywords:
Hamiltonian formalism, Lie–Poisson bracket, classical scattering matrix, non-Abelian plasma, plasmon, color-charged particle
Citation:
Yu. A. Markov, M. A. Markova, N. Yu. Markov, “Classical scattering matrix for hard and soft excitations in a plasma with non-abelian interaction”, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 240, VINITI, Moscow, 2025, 29–38
Linking options:
https://www.mathnet.ru/eng/into1342 https://www.mathnet.ru/eng/into/v240/p29
|
|