Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 133, Pages 81–119 (Mi into191)  

This article is cited in 2 scientific papers (total in 2 papers)

Criteria of the uniqueness of solutions and well-posedness of inverse source problems

A. B. Kostin

National Engineering Physics Institute "MEPhI", Moscow
Abstract: In this paper, we study the relation between the well-posedness of the inverse problem of the recovering the source in an abstract differential equation and the basis property of a certain class of function systems in a Hilbert space. As a consequence, based on the results concerning the well-posedness of inverse problems, we obtain the Riesz basis property and—under certain additional conditions—the Bari basis property of such systems.
Keywords: inverse problem, equation in Hilbert space, final observation, well-posedness, completeness, Riesz basis property.
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 230, Issue 6, Pages 907–949
DOI: https://doi.org/10.1007/s10958-018-3799-8
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 35P05, 35R30, 47F05
Language: Russian
Citation: A. B. Kostin, “Criteria of the uniqueness of solutions and well-posedness of inverse source problems”, Functional analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 133, VINITI, Moscow, 2017, 81–119; J. Math. Sci. (N. Y.), 230:6 (2018), 907–949
Citation in format AMSBIB
\Bibitem{Kos17}
\by A.~B.~Kostin
\paper Criteria of the uniqueness of solutions and well-posedness of inverse source problems
\inbook Functional analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 133
\pages 81--119
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into191}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3799501}
\zmath{https://zbmath.org/?q=an:1391.35292}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 230
\issue 6
\pages 907--949
\crossref{https://doi.org/10.1007/s10958-018-3799-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045058240}
Linking options:
  • https://www.mathnet.ru/eng/into191
  • https://www.mathnet.ru/eng/into/v133/p81
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :163
    References:3
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026