Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 140, Pages 88–118 (Mi into237)  

This article is cited in 15 scientific papers (total in 15 papers)

Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations

V. Zh. Sakbaev

Moscow Institute of Physics and Technology
Abstract: We study random walks in a Hilbert space $H$ and their applications to representations of solutions to Cauchy problems for differential equations whose initial conditions are numerical functions on the Hilbert space $H$. Examples of such representations of solutions to various evolution equations in the case of a finite-dimensional space $H$ are given. Measures on a Hilbert space that are invariant with respect to shifts are considered for constructing such representations in infinite-dimensional Hilbert spaces. According to a theorem of A. Weil, there is no Lebesgue measure on an infinite-dimensional Hilbert space. We study a finitely additive analog of the Lebesgue measure, namely, a nonnegative, finitely additive measure $\lambda$ defined on the minimal ring of subsets of an infinite-dimensional Hilbert space $H$ containing all infinite-dimensional rectangles whose products of sides converge absolutely; this measure is invariant with respect to shifts and rotations in the Hilbert space $H$. We also consider finitely additive analogs of the Lebesgue measure on the spaces $l_{p}$, $1\leq p\leq \infty$, and introduce the Hilbert space $\mathcal H$ of complex-valued functions on the Hilbert space $H$ that are square integrable with respect to a shift-invariant measure $\lambda$. We also obtain representations of solutions to the Cauchy problem for the diffusion equation in the space $H$ and the Schrödinger equation with the coordinate space $H$ by means of iterations of the mathematical expectations of random shift operators in the Hilbert space $\mathcal H$.
Keywords: finitely additive measure, invariant measure on a group, random walk, diffusion equation, Cauchy problem, Chernov theorem.
Funding agency Grant number
Russian Science Foundation 14-11-00687
This work was performed at the Steklov Mathematical Institute of the Russian Academy of Sciences under the support of the Russian Science Foundation (project No. 14-11-00687).
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 4, Pages 469–500
DOI: https://doi.org/10.1007/s10958-019-04438-z
Bibliographic databases:
Document Type: Article
UDC: 517.982, 517.983
MSC: 28C20, 81Q05, 47D08
Language: Russian
Citation: V. Zh. Sakbaev, “Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 140, VINITI, M., 2017, 88–118; Journal of Mathematical Sciences, 241:4 (2019), 469–500
Citation in format AMSBIB
\Bibitem{Sak17}
\by V.~Zh.~Sakbaev
\paper Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations
\inbook Differential equations. Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 140
\pages 88--118
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into237}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3799898}
\zmath{https://zbmath.org/?q=an:1426.28027}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 4
\pages 469--500
\crossref{https://doi.org/10.1007/s10958-019-04438-z}
Linking options:
  • https://www.mathnet.ru/eng/into237
  • https://www.mathnet.ru/eng/into/v140/p88
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025