Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 141, Pages 48–60 (Mi into242)  

On the localization conditions for the spectrum of a non-self-adjoint Sturm–Liouville operator with slowly growing potential

L. G. Valiullina, Kh. K. Ishkin

Bashkir State University, Ufa
Abstract: We consider the Sturm–Liouville operator $T_0$ on the semi-axis $(0,+\infty)$ with the potential $e^{i\theta}q$, where $0<\theta<\pi$ and $q$ is a real-valued function that can have arbitrarily slow growth at infinity. This operator does not meet any condition of the Keldysh theorem: $T_0$ is non-self-adjoint and its resolvent does not belong to the Neumann–Schatten class $\mathfrak{S}_p$ for any $p<\infty$. We find conditions for $q$ and perturbations of $V$ under which the localization or the asymptotics of its spectrum is preserved.
Keywords: non-self-adjoint differential operator, Keldysh theorem, spectral stability, localization of spectrum.
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 5, Pages 556–569
DOI: https://doi.org/10.1007/s10958-019-04445-0
Bibliographic databases:
Document Type: Article
UDC: 517.927.25
MSC: 34B24, 47E05
Language: Russian
Citation: L. G. Valiullina, Kh. K. Ishkin, “On the localization conditions for the spectrum of a non-self-adjoint Sturm–Liouville operator with slowly growing potential”, Differential equations. Spectral theory, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 141, VINITI, M., 2017, 48–60; Journal of Mathematical Sciences, 241:5 (2019), 556–569
Citation in format AMSBIB
\Bibitem{ValIsh17}
\by L.~G.~Valiullina, Kh.~K.~Ishkin
\paper On the localization conditions for the spectrum of a non-self-adjoint Sturm--Liouville operator with slowly growing potential
\inbook Differential equations. Spectral theory
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 141
\pages 48--60
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into242}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3801337}
\zmath{https://zbmath.org/?q=an:07123832}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 5
\pages 556--569
\crossref{https://doi.org/10.1007/s10958-019-04445-0}
Linking options:
  • https://www.mathnet.ru/eng/into242
  • https://www.mathnet.ru/eng/into/v141/p48
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:254
    Full-text PDF :107
    References:3
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026