Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 150, Pages 40–77 (Mi into329)  

This article is cited in 4 scientific papers (total in 4 papers)

Eigenvalue Problems for Tensor-Block Matrices and Their Applications to Mechanics

M. U. Nikabadze

Lomonosov Moscow State University
Full-text PDF (417 kB) Citations (4)
References:
Abstract: In this paper, we state and examine the eigenvalue problem for symmetric tensor-block matrices of arbitrary even rank and arbitrary size $m\times m$, $m\geq 1$. We present certain definitions and theorems of the theory of tensor-block matrices. We obtain formulas that express classical invariants (that are involved in the characteristic equation) of a tensor-block matrix of arbitrary even rank and size $2\times2$ through the first invariants of powers of the same tensor-block matrix and also inverse formulas. A complete orthonormal system of tensor eigencolumns for a tensor-block matrix of arbitrary even rank and size $2\times2$ is constructed. The generalized eigenvalue problem for a tensor-block matrix is stated. As a particular case, the tensor-block matrix of tensors of elasticity moduli is considered. We also present canonical representations of the specific energy of deformation and defining relations. We propose a classification of anisotropic micropolar linearly elastic media that do not possess a symmetry center.
Keywords: eigenvalue problem for a tensor-block matrix, tensor column, eigentensor, anisotropy symbol of a tensor-block matrix, anisotrop symbol of a material.
Funding agency Grant number
Shota Rustaveli National Science Foundation DI-2016-41
Russian Foundation for Basic Research 15-01-00848-a
This work was supported by the Shota Rustaveli National Science Foundation (project No. DI-2016-41) and the Russian Foundation for Basic Research (project No. 15-01-00848-a).
English version:
Journal of Mathematical Sciences (New York), 2020, Volume 250, Issue 6, Pages 895–931
DOI: https://doi.org/10.1007/s10958-020-05053-z
Bibliographic databases:
Document Type: Article
UDC: 512.64+517.958
MSC: 74B05
Language: Russian
Citation: M. U. Nikabadze, “Eigenvalue Problems for Tensor-Block Matrices and Their Applications to Mechanics”, Geometry and Mechanics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 150, VINITI, Moscow, 2018, 40–77; J. Math. Sci. (N. Y.), 250:6 (2020), 895–931
Citation in format AMSBIB
\Bibitem{Nik18}
\by M.~U.~Nikabadze
\paper Eigenvalue Problems for Tensor-Block Matrices and Their Applications to Mechanics
\inbook Geometry and Mechanics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 150
\pages 40--77
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into329}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3847620}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2020
\vol 250
\issue 6
\pages 895--931
\crossref{https://doi.org/10.1007/s10958-020-05053-z}
Linking options:
  • https://www.mathnet.ru/eng/into329
  • https://www.mathnet.ru/eng/into/v150/p40
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025