Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 159, Pages 111–132 (Mi into417)  

This article is cited in 2 scientific papers (total in 2 papers)

E-groups and E-rings

P. A. Krylova, A. A. Tuganbaevbc, A. V. Tsarevd

a National Research Tomsk State University
b National Research University "Moscow Power Engineering Institute"
c Lomonosov Moscow State University
d Moscow State Pedagogical University
Full-text PDF (387 kB) Citations (2)
References:
Abstract: An associative ring $R$ is called an $E$-ring if the canonical homomorphism $R\cong \textsf{E}(R^+)$ is an isomorphism. Additive groups of $E$-rings are called $E$-groups. In other words, an Abelian group $A$ is an $E$-group if and only if $A\cong \operatorname{End} A$ and the endomorphism ring $\textsf{E}(A)$ is commutative. In this paper, we give a survey of the main results on $E$-groups and $E$-rings and also consider some of their generalizations: $\mathcal{E}$-closed groups, $T$-rings, $A$-rings, the groups admitting only commutative multiplications, etc.
Keywords: Abelian group, $\mathcal{E}$-closed group, $E$-group, $E$-ring, $T$-ring, quotient divisible group, $A$-ring, endomorphism ring.
Funding agency Grant number
Russian Science Foundation 16-11-10013
The work of A. A. Tuganbaev was supported by the Russian Science Foundation (project No. 16-11-10013).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 256, Issue 4, Pages 341–361
DOI: https://doi.org/10.1007/s10958-021-05430-2
Bibliographic databases:
Document Type: Article
UDC: 512.541
MSC: 20Kxx
Language: Russian
Citation: P. A. Krylov, A. A. Tuganbaev, A. V. Tsarev, “E-groups and E-rings”, Algebra, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 159, VINITI, Moscow, 2019, 111–132; J. Math. Sci. (N. Y.), 256:4 (2021), 341–361
Citation in format AMSBIB
\Bibitem{KryTugTsa19}
\by P.~A.~Krylov, A.~A.~Tuganbaev, A.~V.~Tsarev
\paper E-groups and E-rings
\inbook Algebra
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 159
\pages 111--132
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into417}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3939219}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 256
\issue 4
\pages 341--361
\crossref{https://doi.org/10.1007/s10958-021-05430-2}
Linking options:
  • https://www.mathnet.ru/eng/into417
  • https://www.mathnet.ru/eng/into/v159/p111
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025