Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 167, Pages 3–13
DOI: https://doi.org/10.36535/0233-6723-2019-167-3-13
(Mi into483)
 

This article is cited in 2 scientific papers (total in 2 papers)

Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type

S. N. Askhabovab

a Chechen State Pedagogical Institute
b Chechen State University, Groznyi
Full-text PDF (216 kB) Citations (2)
References:
Abstract: Using the method of maximal monotonic (in the Browder–Minty sense) operators, we prove global theorems on the existence and uniqueness of solutions for various classes of nonlinear integro-differential equations of convolution type in real spaces $L_p$, $1<p<\infty$, and present illustrative examples.
Keywords: positive operator, convolution operator, monotone operator, nonlinear integro-differential equation.
Funding agency Grant number
Russian Foundation for Basic Research 18-41-200001
Bibliographic databases:
Document Type: Article
UDC: 517.968
MSC: 45G10, 47J05
Language: Russian
Citation: S. N. Askhabov, “Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type”, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 167, VINITI, Moscow, 2019, 3–13
Citation in format AMSBIB
\Bibitem{Ask19}
\by S.~N.~Askhabov
\paper Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type
\inbook Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 167
\pages 3--13
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into483}
\crossref{https://doi.org/10.36535/0233-6723-2019-167-3-13}
\elib{https://elibrary.ru/item.asp?id=42518506}
Linking options:
  • https://www.mathnet.ru/eng/into483
  • https://www.mathnet.ru/eng/into/v167/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:378
    Full-text PDF :160
    References:88
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026