Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 167, Pages 42–51
DOI: https://doi.org/10.36535/0233-6723-2019-167-42-51
(Mi into488)
 

This article is cited in 1 scientific paper (total in 1 paper)

Strong solution and optimal control problems for a class of fractional linear equations

M. V. Plekhanova

South Ural State University, Chelyabinsk
Full-text PDF (229 kB) Citations (1)
References:
Abstract: In this paper, we examine the unique solvability (in the sense of strong solutions) of the Cauchy problem for a linear inhomogeneous equation in a Banach space solved with respect to the Caputo fractional derivative. We assume that the operator acting on the unknown function in the right-hand side of the equation generates an analytic resolving operator family for the corresponding homogeneous equation. We obtain a representation of a strong solution of the Cauchy problem and examine the solvability of optimal control problems with a convex, lower semicontinuous, lower bounded, coercive functional for the equation considered. The general results obtained are used to prove the existence of an optimal control in problems with specific functionals. Abstract results obtained for a control system described by an equation in a Banach space are illustrated by examples of optimal control problems for a fractional equation whose special cases are the subdiffusion equation and the diffusion wave equation.
Keywords: Caputo fractional derivative, fractional evolution equation, resolving family of operators analytic in a sector, optimal control problem, subdiffusion equation, diffusionwave equation.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0011
1.6462.2017/БЧ
Document Type: Article
UDC: 517.977
MSC: 49J20, 35R11, 34G10
Language: Russian
Citation: M. V. Plekhanova, “Strong solution and optimal control problems for a class of fractional linear equations”, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 167, VINITI, Moscow, 2019, 42–51
Citation in format AMSBIB
\Bibitem{Ple19}
\by M.~V.~Plekhanova
\paper Strong solution and optimal control problems for a class of fractional linear equations
\inbook Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 167
\pages 42--51
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into488}
\crossref{https://doi.org/10.36535/0233-6723-2019-167-42-51}
Linking options:
  • https://www.mathnet.ru/eng/into488
  • https://www.mathnet.ru/eng/into/v167/p42
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :120
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025