Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 168, Pages 61–70
DOI: https://doi.org/10.36535/0233-6723-2019-168-61-70
(Mi into501)
 

On the stability of integral manifolds of a system of ordinary differential equations in the critical case

M. I. kuptsova, V. A. Minaevb, A. O. Faddeevc, S. L. Yablochnikovc

a Ryazan State Radio Engineering University
b Bauman Moscow State Technical University
c The Academy of Law Management of the Federal Penal Service of Russia
References:
Abstract: In this paper, we consider the stability problem for nonzero integral manifolds of a nonlinear, finite-dimensional system of ordinary differential equations whose right-hand side is a periodic vector-valued function with respect to an independent variable containing a parameter. We assume that the system possesses a trivial integral manifold for all values of the parameter and the corresponding linear subsystem does not possess the exponential dichotomy property. We find sufficient conditions for the existence of a nonzero integral manifold in a neighborhood of the equilibrium of the system and conditions for its stability or instability. For this purpose, based of the ideas of the Lyapunov method and the method of transform matrices, we construct operators that allow one to reduce the solution of this problem to the search for fixed points.
Keywords: Lyapunov method, method of transform matrices, stability of integral manifolds, system of ordinary differential equations, operator equation.
Bibliographic databases:
Document Type: Article
UDC: 517.925.42, 517.925.53, 517.928.7
Language: Russian
Citation: M. I. kuptsov, V. A. Minaev, A. O. Faddeev, S. L. Yablochnikov, “On the stability of integral manifolds of a system of ordinary differential equations in the critical case”, Proceedings   of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 168, VINITI, Moscow, 2019, 61–70
Citation in format AMSBIB
\Bibitem{KupMinFad19}
\by M.~I.~kuptsov, V.~A.~Minaev, A.~O.~Faddeev, S.~L.~Yablochnikov
\paper On the stability of integral manifolds of a system of ordinary differential equations in the critical case
\inbook Proceedings   of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25--28, 2018. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 168
\pages 61--70
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into501}
\crossref{https://doi.org/10.36535/0233-6723-2019-168-61-70}
\elib{https://elibrary.ru/item.asp?id=41838553}
Linking options:
  • https://www.mathnet.ru/eng/into501
  • https://www.mathnet.ru/eng/into/v168/p61
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:219
    Full-text PDF :144
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025