Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 170, Pages 3–14
DOI: https://doi.org/10.36535/0233-6723-2019-170-3-14
(Mi into520)
 

Nonlinear integral equations with potential-type kernels in the nonperiodic case

S. N. Askhabovab

a Chechen State Pedagogical Institute
b Chechen State University, Groznyi
References:
Abstract: We find conditions under which a generalized potential-type operator acts continuously from a Lebesgue space with a general weight to its dual space and possesses the positivity property. Using these conditions, the global existence and uniqueness theorems for various classes of nonlinear integral equations of convolution type in real weighted Lebesgue spaces are proved by the method of monotonic (in the Browder–Minty sense) operators. Also we obtain estimates of the norms of solutions which imply that the corresponding homogeneous equations have only a trivial solution.
Keywords: positive operator, generalized potential-type operator, monotonic operator, nonlinear integral equation.
Funding agency Grant number
Russian Foundation for Basic Research 18-41-200001
This work was supported by the Russian Foundation for Basic Research (project No. 18-41-200001).
Bibliographic databases:
Document Type: Article
UDC: 517.968.4
MSC: 45G10, 47J05
Language: Russian
Citation: S. N. Askhabov, “Nonlinear integral equations with potential-type kernels in the nonperiodic case”, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 170, VINITI, Moscow, 2019, 3–14
Citation in format AMSBIB
\Bibitem{Ask19}
\by S.~N.~Askhabov
\paper Nonlinear integral equations with potential-type kernels in the nonperiodic case
\inbook Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part~1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 170
\pages 3--14
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into520}
\crossref{https://doi.org/10.36535/0233-6723-2019-170-3-14}
\elib{https://elibrary.ru/item.asp?id=42518512}
Linking options:
  • https://www.mathnet.ru/eng/into520
  • https://www.mathnet.ru/eng/into/v170/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025