Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 171, Pages 78–93
DOI: https://doi.org/10.36535/0233-6723-2019-171-78-93
(Mi into535)
 

Representation of solutions of a certain integro-differential equation and applications

D. A. Zakora

Crimea Federal University, Simferopol
References:
Abstract: In this paper, we consider a second-order integro-differential equation with unbounded operator coefficients in a Hilbert space, which is an abstract hyperbolic equation perturbed by an integral term with a difference-type kernel of a special form. This equation arises in the description of various viscoelastic systems. Using the system of generalized eigenvectors of the operator bundle associated with the equation considered, we construct a $p$-basis in the orthogonal sum of Hilbert spaces. Using this basis, we find a representation of the solution of the equation. We also discuss possible applications to problems of viscoelasticity.
Keywords: integro-differential equation, spectral analysis, operator bundle, $p$-base.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.Z50.31.0037
This work was supported by the Ministry of Education and Science of Russian Federation (project № 14.Z50.31.0037).
Document Type: Article
UDC: 517.929, 517.984.52
MSC: 45J05, 45C05
Language: Russian
Citation: D. A. Zakora, “Representation of solutions of a certain integro-differential equation and applications”, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 171, VINITI, Moscow, 2019, 78–93
Citation in format AMSBIB
\Bibitem{Zak19}
\by D.~A.~Zakora
\paper Representation of solutions of a certain integro-differential equation and applications
\inbook Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 171
\pages 78--93
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into535}
\crossref{https://doi.org/10.36535/0233-6723-2019-171-78-93}
Linking options:
  • https://www.mathnet.ru/eng/into535
  • https://www.mathnet.ru/eng/into/v171/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025