Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 171, Pages 94–101
DOI: https://doi.org/10.36535/0233-6723-2019-171-94-101
(Mi into536)
 

On the invertibility conditions of finite-difference operators

L. Yu. Kabantosva

Voronezh State University
References:
Abstract: The invertibility of second-order finite-difference operators with constant operator coefficients acting in the Banach space of two-sided vector sequences is proved under the condition of their uniform injectivity (in particular, left invertibility) or surjectivity (in particular, right invertibility) or Fredholm property.
Keywords: second-order finite-difference operator, uniform injectivity, surjectivity, Fredholm property, spectrum, invertibility.
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 39A70, 47B39
Language: Russian
Citation: L. Yu. Kabantosva, “On the invertibility conditions of finite-difference operators”, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 171, VINITI, Moscow, 2019, 94–101
Citation in format AMSBIB
\Bibitem{Kab19}
\by L.~Yu.~Kabantosva
\paper On the invertibility conditions of finite-difference operators
\inbook Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 171
\pages 94--101
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into536}
\crossref{https://doi.org/10.36535/0233-6723-2019-171-94-101}
\elib{https://elibrary.ru/item.asp?id=42458875}
Linking options:
  • https://www.mathnet.ru/eng/into536
  • https://www.mathnet.ru/eng/into/v171/p94
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025