Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 172, Pages 104–112
DOI: https://doi.org/10.36535/0233-6723-2019-172-104-112
(Mi into549)
 

This article is cited in 2 scientific papers (total in 2 papers)

Comparative analysis of the matrix method and the finite-difference method for modeling the distribution of minority charge carriers in a multilayer planar semiconductor structure

E. V. Sereginaa, V. V. Kalmanovichb, M. A. Stepovichb

a Kaluga Branch of Bauman Moscow State Technical University
b Tsiolkovsky Kaluga State University
Full-text PDF (270 kB) Citations (2)
References:
Abstract: The stationary differential heat and mass transfer equation with discontinuous coefficients describes various non-time-dependent physical processes, for example, the distribution of minority carriers from a stationary source in an inhomogeneous or multilayer structure. In this paper, we analyze the possibilities of applying the matrix method and the finite-difference method for modeling the distribution of minority charge carriers generated by kilovolt electrons in a multilayer semiconductor material. The efficiency of the matrix method for solving stationary differential equations with discontinuous coefficients is shown.
Keywords: mathematical model, differential equation, electron beam, semiconductor, multilayer planar structure, matrix method, finite-difference method.
Funding agency Grant number
Russian Foundation for Basic Research 19-03-00271
18-41-400001
This work was supported by the Russian Foundation for Basic Research (project No. 19-03-0300271) and the joint project of the Russian Foundation for Basic Research and the Government of the Kaluga Region No. 18–41-400001.
Document Type: Article
UDC: 517.927.2, 519.677
Language: Russian
Citation: E. V. Seregina, V. V. Kalmanovich, M. A. Stepovich, “Comparative analysis of the matrix method and the finite-difference method for modeling the distribution of minority charge carriers in a multilayer planar semiconductor structure”, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 172, VINITI, Moscow, 2019, 104–112
Citation in format AMSBIB
\Bibitem{SerKalSte19}
\by E.~V.~Seregina, V.~V.~Kalmanovich, M.~A.~Stepovich
\paper Comparative analysis of the matrix method and the finite-difference method for modeling the distribution of minority charge carriers in a multilayer planar semiconductor structure
\inbook Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 172
\pages 104--112
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into549}
\crossref{https://doi.org/10.36535/0233-6723-2019-172-104-112}
Linking options:
  • https://www.mathnet.ru/eng/into549
  • https://www.mathnet.ru/eng/into/v172/p104
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025