Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 173, Pages 86–115
DOI: https://doi.org/10.36535/0233-6723-2019-173-86-115
(Mi into559)
 

This article is cited in 9 scientific papers (total in 9 papers)

Decomposable five-dimensional Lie algebras in the problem of holomorphic homogeneity in $\mathbb{C}^3$

A. V. Atanova, A. V. Lobodab

a Voronezh State University
b Voronezh State Technical University
Full-text PDF (357 kB) Citations (9)
References:
Abstract: In connection with the problem of describing holomorphically homogeneous real hypersurfaces in the space $\mathbb{C}^3$, we study five-dimensional real Lie algebras realized as algebras of holomorphic vector fields on such manifolds. We prove that if on a holomorphically homogeneous real hypersurface $M$ of the space $\mathbb{C}^3$, there is a decomposable, solvable, five-dimensional Lie algebra of holomorphic vector fields having a full rank near some point $P\in M$, then this surface is either degenerate near $P$ in the sense of Levy or is a holomorphic image of an affine-homogeneous surface.
Keywords: homogeneous manifold, holomorphic transformation, decomposable Lie algebra, vector field, real hypersurface in $\mathbb{C}^3$.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00592-a
The work of A. V. Loboda was supported by the Russian Foundation for Basic Research (project No. 17-01-00592-a).
Document Type: Article
UDC: 517.765, 515.172.2, 512.816
MSC: 32V40, 53B25, 17B66
Language: Russian
Citation: A. V. Atanov, A. V. Loboda, “Decomposable five-dimensional Lie algebras in the problem of holomorphic homogeneity in $\mathbb{C}^3$”, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 173, VINITI, Moscow, 2019, 86–115
Citation in format AMSBIB
\Bibitem{AtaLob19}
\by A.~V.~Atanov, A.~V.~Loboda
\paper Decomposable five-dimensional Lie algebras in the problem of holomorphic homogeneity in~$\mathbb{C}^3$
\inbook Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 173
\pages 86--115
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into559}
\crossref{https://doi.org/10.36535/0233-6723-2019-173-86-115}
Linking options:
  • https://www.mathnet.ru/eng/into559
  • https://www.mathnet.ru/eng/into/v173/p86
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:341
    Full-text PDF :202
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026