|
A priori estimate of solutions of one boundary-value problem in a strip for a higher-order degenerate elliptic equation
V. V. Pankov, A. D. Baev, V. D. Kharchenko, A. A. Babaitsev Voronezh State University
Abstract:
Coercive a priori estimates of solutions of a Dirichlet-type boundary-value problem in a strip for a certain higher-order degenerate elliptic equation containing weighted derivatives of a special form up to the order $2m$ and ordinary partial derivatives up to the order $2k-1$ under the condition $2m>2k-1$ are proved. At the boundary of the strip, Dirichlet-type conditions are imposed. A coercive a priori estimate for solutions of the problem considered in special weighted Sobolev-type spaces is obtained.
Keywords:
a priori estimate, degenerate elliptic equation, Sobolev weight space.
Citation:
V. V. Pankov, A. D. Baev, V. D. Kharchenko, A. A. Babaitsev, “A priori estimate of solutions of one boundary-value problem in a strip for a higher-order degenerate elliptic equation”, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 173, VINITI, Moscow, 2019, 116–125
Linking options:
https://www.mathnet.ru/eng/into560 https://www.mathnet.ru/eng/into/v173/p116
|
| Statistics & downloads: |
| Abstract page: | 201 | | Full-text PDF : | 221 | | References: | 45 |
|