|
Geodesic vectors and flat totally geodesic subalgebras in nilpotent metric Lie algebras
A. Al-Abayechi, Á. Figula Institute of Mathematics, University of Debrecen
Abstract:
We determine geodesics and flat totally geodesic subalgebras in higher-step nilpotent metric Lie algebras of dimension $5$. It is surprising that in nonfiliform metric Lie algebras with one-dimensional center, the geodesic vectors and flat totally geodesic subalgebras are independent of the choice of the inner product.
Keywords:
nilpotent metric Lie algebra, geodesic vector, nonfiliform metric Lie algebras, flat totally geodesic subalgebras, inner product.
Citation:
A. Al-Abayechi, Á. Figula, “Geodesic vectors and flat totally geodesic subalgebras in nilpotent metric Lie algebras”, Algebra, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 177, VINITI, Moscow, 2020, 10–23
Linking options:
https://www.mathnet.ru/eng/into594 https://www.mathnet.ru/eng/into/v177/p10
|
| Statistics & downloads: |
| Abstract page: | 405 | | Full-text PDF : | 200 | | References: | 55 |
|