Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 178, Pages 112–134
DOI: https://doi.org/10.36535/0233-6723-2020-178-112-134
(Mi into616)
 

Symmetries of Hamiltonian systems on Lie algebroids

L. Popescu

University of Craiova
References:
Abstract: In the present paper, we study infinitesimal symmetries, natural infinitesimal symmetries, Newtonoid sections, infinitesimal Noether symmetries, and conservation laws for Hamiltonian systems within the general framework of Lie algebroids. Using dynamical covariant derivatives and Jacobi endomorphisms, we find invariant equations of some type of symmetries and prove that the canonical nonlinear connection induced by a regular Hamiltonian can be determined by these symmetries. Finally, we present examples from the optimal control theory that prove that the framework of Lie algebroids is more useful than the cotangent bundle in order to study the symmetries for the dynamics induced by a Hamiltonian function.
Keywords: infinitesimal symmetry, Lie algebroid, Hamiltonian system, conservation law, dynamical covariant derivative, Jacobi endomorphism.
Document Type: Article
UDC: 512.81
Language: Russian
Citation: L. Popescu, “Symmetries of Hamiltonian systems on Lie algebroids”, Optimal control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 178, VINITI, Moscow, 2020, 112–134
Citation in format AMSBIB
\Bibitem{Pop20}
\by L.~Popescu
\paper Symmetries of Hamiltonian systems on Lie algebroids
\inbook Optimal control
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 178
\pages 112--134
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into616}
\crossref{https://doi.org/10.36535/0233-6723-2020-178-112-134}
Linking options:
  • https://www.mathnet.ru/eng/into616
  • https://www.mathnet.ru/eng/into/v178/p112
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :145
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025