Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 179, Pages 73–77
DOI: https://doi.org/10.36535/0233-6723-2020-179-73-77
(Mi into629)
 

On proofs of properties of semirecursive sets

I. L. Timofeeva

Moscow State Pedagogical University
References:
Abstract: In this paper, we present proofs of properties of semirecursive sets based directly on the definition of these sets and on the recursiveness of Kleene predicates. These proofs are shorter and clearer than traditional proofs of similar statements for recursively enumerable sets.
Keywords: semirecursive set, semicharacteristic function, recursively enumerable set, partially recursive function, recursive function, Kleene predicate.
Bibliographic databases:
Document Type: Article
UDC: 510.5
MSC: 03D25
Language: Russian
Citation: I. L. Timofeeva, “On proofs of properties of semirecursive sets”, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 179, VINITI, Moscow, 2020, 73–77
Citation in format AMSBIB
\Bibitem{Tim20}
\by I.~L.~Timofeeva
\paper On proofs of properties of semirecursive sets
\inbook Proceedings of the International Conference "Classical and Modern Geometry"
Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev.
Moscow, April 22-25, 2019. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 179
\pages 73--77
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into629}
\crossref{https://doi.org/10.36535/0233-6723-2020-179-73-77}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4208324}
Linking options:
  • https://www.mathnet.ru/eng/into629
  • https://www.mathnet.ru/eng/into/v179/p73
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025