Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 179, Pages 78–80
DOI: https://doi.org/10.36535/0233-6723-2020-179-78-80
(Mi into630)
 

On the Сesàro convergence of numerical series

V. V. Timoshenko

Moscow State Pedagogical University
References:
Abstract: The transition from a given series to the series of averaged sums of its terms is called the Cesàro procedure. In this paper, we construct a series for which $n$-multiple application of the Cesàro procedure gives divergent series whereas the $(n+1)$-multiple leads to a convergent series.
Keywords: series, convergence, Cesàro convergence.
Document Type: Article
UDC: 517.521
Language: Russian
Citation: V. V. Timoshenko, “On the Сesàro convergence of numerical series”, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 179, VINITI, Moscow, 2020, 78–80
Citation in format AMSBIB
\Bibitem{Tim20}
\by V.~V.~Timoshenko
\paper On the Сes\`aro convergence of numerical series
\inbook Proceedings of the International Conference "Classical and Modern Geometry"
Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev.
Moscow, April 22-25, 2019. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 179
\pages 78--80
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into630}
\crossref{https://doi.org/10.36535/0233-6723-2020-179-78-80}
Linking options:
  • https://www.mathnet.ru/eng/into630
  • https://www.mathnet.ru/eng/into/v179/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025