Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 181, Pages 59–65
DOI: https://doi.org/10.36535/0233-6723-2020-181-59-65
(Mi into658)
 

Reconstruction of a triangle on a plane by three projections

M. V. Kurkina, S. P. Semenov, V. V. Slavskii

Yugra State University, Khanty-Mansiysk
References:
Abstract: In this paper, we consider the following problem. On the plane, a triangle $\triangle ABC$ and three straight lines $l_{1}$, $l_{2}$, and $l_{3}$ in the general position are given; the locations of the straight lines are unknown. The problem consists of the reconstruction of the triangle $\triangle ABC$ by the known lengths of the sides of the triangles $\triangle A_{1}B_{1}C_{1}$, $\triangle A_{2}B_{2}C_{2}$, and $\triangle A_{3}B_{3}C_{3}$, which are the projections of the triangle $\triangle ABC$ onto the lines $l_{1}$, $l_{2}$, and $l_{3}$. Similar problems and their multidimensional generalizations are of interest in the theory of computer images.
Keywords: triangle, small-angle computed tomography.
Funding agency Grant number
Russian Foundation for Basic Research 18-47-860016
18-01-00620
Science Foundation of Yugra State University 13-01-20/10
This work was supported by the Russian Foundation for Basic Research (project Nos. 18-47-860016 and 18-01-00620) and the Scientific Foundation of the Yugra State University (project No. 13-01-20/10).
Bibliographic databases:
Document Type: Article
UDC: 514.12
MSC: 51N20, 65D18, 97G70
Language: Russian
Citation: M. V. Kurkina, S. P. Semenov, V. V. Slavskii, “Reconstruction of a triangle on a plane by three projections”, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 181, VINITI, Moscow, 2020, 59–65
Citation in format AMSBIB
\Bibitem{KurSemSla20}
\by M.~V.~Kurkina, S.~P.~Semenov, V.~V.~Slavskii
\paper Reconstruction of a triangle on a plane by three projections
\inbook Proceedings of the International Conference "Classical and Modern Geometry"
Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev.
Moscow, April 22-25, 2019. Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 181
\pages 59--65
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into658}
\crossref{https://doi.org/10.36535/0233-6723-2020-181-59-65}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4208369}
Linking options:
  • https://www.mathnet.ru/eng/into658
  • https://www.mathnet.ru/eng/into/v181/p59
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025