Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 183, Pages 113–119
DOI: https://doi.org/10.36535/0233-6723-2020-183-113-119
(Mi into691)
 

Minimal branches of solutions of nonlinear operator equations in Banach spaces

R. Yu. Leontiev

Irkutsk State University
References:
Abstract: We consider the nonlinear equation $B(\lambda)x=R(x,\lambda)+b(\lambda)$, where $R(0,0)=0$, $b(0)=0$, the linear operator $B(\lambda)$ has a bounded inverse operator for $S\ni\lambda\rightarrow0$, and $S$ is an open set, $0\in\partial S$. We examine the problem on the existence of a small continuous solution of the maximal order od smallness $x(\lambda)\rightarrow0$ as $S\ni\lambda\rightarrow0$. A constructive method way of constructing this solution is presented.
Keywords: nonlinear operator, Banach space, operator equation, minimal branch.
Bibliographic databases:
Document Type: Article
UDC: 517.988
MSC: 47J99
Language: Russian
Citation: R. Yu. Leontiev, “Minimal branches of solutions of nonlinear operator equations in Banach spaces”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 183, VINITI, Moscow, 2020, 113–119
Citation in format AMSBIB
\Bibitem{Leo20}
\by R.~Yu.~Leontiev
\paper Minimal branches of solutions of nonlinear operator equations in Banach spaces
\inbook Differential Equations and Optimal Control
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 183
\pages 113--119
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into691}
\crossref{https://doi.org/10.36535/0233-6723-2020-183-113-119}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4237912}
Linking options:
  • https://www.mathnet.ru/eng/into691
  • https://www.mathnet.ru/eng/into/v183/p113
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:188
    Full-text PDF :137
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025