|
Minimal branches of solutions of nonlinear operator equations in Banach spaces
R. Yu. Leontiev Irkutsk State University
Abstract:
We consider the nonlinear equation $B(\lambda)x=R(x,\lambda)+b(\lambda)$, where $R(0,0)=0$, $b(0)=0$, the linear operator $B(\lambda)$ has a bounded inverse operator for $S\ni\lambda\rightarrow0$, and $S$ is an open set, $0\in\partial S$. We examine the problem on the existence of a small continuous solution of the maximal order od smallness $x(\lambda)\rightarrow0$ as $S\ni\lambda\rightarrow0$. A constructive method way of constructing this solution is presented.
Keywords:
nonlinear operator, Banach space, operator equation, minimal branch.
Citation:
R. Yu. Leontiev, “Minimal branches of solutions of nonlinear operator equations in Banach spaces”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 183, VINITI, Moscow, 2020, 113–119
Linking options:
https://www.mathnet.ru/eng/into691 https://www.mathnet.ru/eng/into/v183/p113
|
| Statistics & downloads: |
| Abstract page: | 188 | | Full-text PDF : | 137 | | References: | 48 |
|