Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 185, Pages 3–12
DOI: https://doi.org/10.36535/0233-6723-2020-185-3-12
(Mi into696)
 

Orbital stability of a small periodic solution of an autonomous system of differential equations

V. V. Abramov

Ryazan State University S. A. Esenin
References:
Abstract: We consider a normal autonomous system of differential equations with a small parameter, which has a critical linear approximation at zero value of the parameter. We introduce the concept of orbital stability with respect to the parameter; according to this concept, the closeness of the right semitrajectories is achieved not only due to the proximity of initial values of solutions, but also due to the smallness of the parameter. We examine the problem of branching of a stable periodic solution with a period close to the period of solutions of the corresponding linear homogeneous system. Sufficient conditions for the solvability of the problem are established. Our reasonings are based on the properties of the first homogeneous nonlinear approximation of the monodromy operator.
Keywords: autonomous system of differential equations, small parameter, qualitative theory, small periodic solution, orbital stability, parameter stability, monodromy operator.
Document Type: Article
UDC: 517.925.52
MSC: 34C23, 34C25, 34D20
Language: Russian
Citation: V. V. Abramov, “Orbital stability of a small periodic solution of an autonomous system of differential equations”, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 185, VINITI, Moscow, 2020, 3–12
Citation in format AMSBIB
\Bibitem{Abr20}
\by V.~V.~Abramov
\paper Orbital stability of a small periodic solution of an autonomous system of differential equations
\inbook Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 185
\pages 3--12
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into696}
\crossref{https://doi.org/10.36535/0233-6723-2020-185-3-12}
Linking options:
  • https://www.mathnet.ru/eng/into696
  • https://www.mathnet.ru/eng/into/v185/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :121
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026