Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 185, Pages 19–27
DOI: https://doi.org/10.36535/0233-6723-2020-185-19-27
(Mi into698)
 

Qualitative research in the Poincaré circle of one family of dynamical systems

I. A. Andreevaa, A. F. Andreevb

a Peter the Great St. Petersburg Polytechnic University
b Saint Petersburg State University
References:
Abstract: In this paper, we discuss an extensive family of dynamical systems whose characteristic feature is a polynomial right-hand side containing coprime forms of the phase variables of the system. One of the equations of the system contains a third-degree polynomial (cubic form), the other equation contains a quadratic form. We consider the problem of constructing all possible phase portraits in the Poincaré circle for systems from the family considered and establish criteria for the realization of each portrait that are close to coefficient criteria. This problem is solved by using the central and orthogonal Poincaré methods of sequential mappings and a number of other methods developed by the authors for the purposes of this study. We obtained rigorous qualitative and quantitative results. More than 250 topologically distinct phase portraits of various systems were constructed. The absence of limit cycles of systems of this family is proved. Methods developed can be useful for the further study of systems with polynomial right-hand sides of other forms.
Keywords: dynamical system, Poincaré circle, Poincaré sphere, trajectory, phase space, phase portrait, separatrix, polynomial right-hand side, singular point, limit cycle.
Document Type: Article
UDC: 517.938.25
Language: Russian
Citation: I. A. Andreeva, A. F. Andreev, “Qualitative research in the Poincaré circle of one family of dynamical systems”, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 185, VINITI, Moscow, 2020, 19–27
Citation in format AMSBIB
\Bibitem{AndAnd20}
\by I.~A.~Andreeva, A.~F.~Andreev
\paper Qualitative research in the Poincar\'e circle of one family of dynamical systems
\inbook Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 185
\pages 19--27
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into698}
\crossref{https://doi.org/10.36535/0233-6723-2020-185-19-27}
Linking options:
  • https://www.mathnet.ru/eng/into698
  • https://www.mathnet.ru/eng/into/v185/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :118
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025