Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 185, Pages 72–78
DOI: https://doi.org/10.36535/0233-6723-2020-185-72-78
(Mi into703)
 

On the nature of local bifurcations of the Kuramoto–Sivashinsky equation in various domains

A. V. Sekatskaya

P.G. Demidov Yaroslavl State University
References:
Abstract: We consider a nonlinear parabolic partial differential equation in the case where the unknown function depends on two spatial variables and time, which is a generalization of the well-known Kuramoto–Sivashinsky equation. We consider homogeneous Dirichlet boundary-value problems for this equation. We examine local bifurcations when spatially homogeneous equilibrium states change stability. We show that post-critical bifurcations are realized in the boundary-value problems considered. We obtain asymptotic formulas for solutions and examine the stability of spatially inhomogeneous solutions.
Keywords: Kuramoto–Sivashinsky equation, boundary-value problem, equilibrium state, stability, Galerkin method, computer analysis.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00672
This work was supported by the Russian Foundation for Basic Research (project No. 18-01-00672).
Document Type: Article
UDC: 517.956.4
MSC: 37L10, 37L25, 37L65
Language: Russian
Citation: A. V. Sekatskaya, “On the nature of local bifurcations of the Kuramoto–Sivashinsky equation in various domains”, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 185, VINITI, Moscow, 2020, 72–78
Citation in format AMSBIB
\Bibitem{Sek20}
\by A.~V.~Sekatskaya
\paper On the nature of local bifurcations of the Kuramoto--Sivashinsky equation in various domains
\inbook Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 185
\pages 72--78
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into703}
\crossref{https://doi.org/10.36535/0233-6723-2020-185-72-78}
Linking options:
  • https://www.mathnet.ru/eng/into703
  • https://www.mathnet.ru/eng/into/v185/p72
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025