Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 191, Pages 10–15
DOI: https://doi.org/10.36535/0233-6723-2021-191-10-15
(Mi into761)
 

Unsteady boundary layer of a modified viscous fluid

R. R. Bulatova

Lomonosov Moscow State University
References:
Abstract: In this paper, a system of equations for a nonstationary, symmetric boundary layer of a nonlinearly viscous, incompressible fluid is studied. By using the Crocco transformation, we reduce the boundary-layer system to a single quasilinear degenerate parabolic equation. The unique solvability of the main boundary-value problem is proved.
Keywords: boundary layer, unsteady flow, Crocco variables, modified Ladyzhenskaya fluid.
English version:
Journal of Mathematical Sciences (New York), 2025, Volume 288, Issue 6, Pages 676–681
DOI: https://doi.org/10.1007/s10958-025-07758-5
Document Type: Article
UDC: 517.956.45
MSC: 34B15
Language: Russian
Citation: R. R. Bulatova, “Unsteady boundary layer of a modified viscous fluid”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 191, VINITI, Moscow, 2021, 10–15; J. Math. Sci. (N. Y.), 288:6 (2025), 676–681
Citation in format AMSBIB
\Bibitem{Bul21}
\by R.~R.~Bulatova
\paper Unsteady boundary layer of a modified viscous fluid
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 191
\pages 10--15
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into761}
\crossref{https://doi.org/10.36535/0233-6723-2021-191-10-15}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2025
\vol 288
\issue 6
\pages 676--681
\crossref{https://doi.org/10.1007/s10958-025-07758-5}
Linking options:
  • https://www.mathnet.ru/eng/into761
  • https://www.mathnet.ru/eng/into/v191/p10
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:170
    Full-text PDF :113
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026