Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 191, Pages 149–156
DOI: https://doi.org/10.36535/0233-6723-2021-191-149-156
(Mi into774)
 

The Nijenhuis tensor of a pseudo-cosymplectic manifold

A. R. Rustanova, S. V. Kharitonovab

a Moscow State University of Civil Engineering
b Orenburg State University
References:
Abstract: In this paper, we examine the Nijenhuis tensor of pseudo-cosymplectic manifolds. The adjoint $G$-structure of an almost contact metric manifold is constructed, the first group of such manifolds is defined. The pseudo-cosymplectic subclass of quasi-cosymplectic manifolds is distinguished and the first group of structure equations is obtained for them. We obtained necessary and sufficient conditions under which a pseudo-cosymplectic manifold is cosymplectic, most precisely cosymplectic, normal, or integrable.
Keywords: almost contact metric structure, Nijenhuis tensor, quasi-cosymplectic structure, pseudo-cosymplectic structure, most precisely cosymplectic structure.
English version:
Journal of Mathematical Sciences (New York), 2025, Volume 288, Issue 6, Pages 814–821
DOI: https://doi.org/10.1007/s10958-025-07771-8
Document Type: Article
UDC: 514.76
MSC: 53D15, 53C25
Language: Russian
Citation: A. R. Rustanov, S. V. Kharitonova, “The Nijenhuis tensor of a pseudo-cosymplectic manifold”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 191, VINITI, Moscow, 2021, 149–156; J. Math. Sci. (N. Y.), 288:6 (2025), 814–821
Citation in format AMSBIB
\Bibitem{RusKha21}
\by A.~R.~Rustanov, S.~V.~Kharitonova
\paper The Nijenhuis tensor of a pseudo-cosymplectic manifold
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 191
\pages 149--156
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into774}
\crossref{https://doi.org/10.36535/0233-6723-2021-191-149-156}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2025
\vol 288
\issue 6
\pages 814--821
\crossref{https://doi.org/10.1007/s10958-025-07771-8}
Linking options:
  • https://www.mathnet.ru/eng/into774
  • https://www.mathnet.ru/eng/into/v191/p149
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :173
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026