Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 192, Pages 38–45
DOI: https://doi.org/10.36535/0233-6723-2021-192-38-45
(Mi into779)
 

The method of continuous continuation by a parameter for solving boundary-value problems for nonlinear systems of differential-algebraic equations with delay that have singular points

M. N. Afanaseva, E. B. Kuznetsov

Moscow Aviation Institute (National Research University)
References:
Abstract: In this paper, we consider a numerical method for solving a nonlinear boundary-value problem for a system of differential-algebraic equations with a delayed argument that have singular limit points. For a numerical solution of the boundary-value problem, the shooting method is used. The value of the shooting parameter is calculated by the Newton method. We consider the case where the problem is ill-posed and hence the method may diverge. In this case, the solution is constructed by the method of the best parameter, namely, the length of the curve of the set of solutions. The solution of the initial problem for each value of the shooting parameter is calculated using the method of continuous continuation by the best parameter.
Keywords: numerical method, boundary-value problem, differential equation with delay, shooting method, method of continuation by the best parameter, singularly perturbed equation.
Funding agency Grant number
Russian Science Foundation 18-19-00474
This work was supported by the Russian Science Foundation (project No. 18-19-00474).
Document Type: Article
UDC: 519.624
MSC: 34B16
Language: Russian
Citation: M. N. Afanaseva, E. B. Kuznetsov, “The method of continuous continuation by a parameter for solving boundary-value problems for nonlinear systems of differential-algebraic equations with delay that have singular points”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 192, VINITI, Moscow, 2021, 38–45
Citation in format AMSBIB
\Bibitem{AfaKuz21}
\by M.~N.~Afanaseva, E.~B.~Kuznetsov
\paper The method of continuous continuation by a parameter for solving boundary-value problems for nonlinear systems of differential-algebraic equations with delay that have singular points
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin
readings – XXX”.
Voronezh, May 3-9, 2019. Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 192
\pages 38--45
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into779}
\crossref{https://doi.org/10.36535/0233-6723-2021-192-38-45}
Linking options:
  • https://www.mathnet.ru/eng/into779
  • https://www.mathnet.ru/eng/into/v192/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025