Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 193, Pages 99–103
DOI: https://doi.org/10.36535/0233-6723-2021-193-99-103
(Mi into803)
 

Smoothness in the viscosity of solutions of nonlinear differential equations in a Banach space

V. I. Kachalov

National Research University "Moscow Power Engineering Institute"
References:
Abstract: The analytical properties of solutions of differential equations with a small parameter form the basis of analytical perturbation theory. In the case of a regular theory, Poincaré's decomposition theorems or statements that follow from the concept of an analytic family in the sense of Kato hold. For singularly perturbed problems, the approach based on S. A. Lomov's regularization method is useful; the central concept of this method is the concept of a pseudoanalytic (pseudoholomorphic) solution, i.e., a solution, which can be represented in the form of a series converging in the usual sense in powers of a small parameter.
Keywords: Navier–Stokes-type equation, pseudoholomorphic solution, monotone system of norms.
Document Type: Article
UDC: 517.925
MSC: 34E05, 34K26
Language: Russian
Citation: V. I. Kachalov, “Smoothness in the viscosity of solutions of nonlinear differential equations in a Banach space”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 193, VINITI, Moscow, 2021, 99–103
Citation in format AMSBIB
\Bibitem{Kac21}
\by V.~I.~Kachalov
\paper Smoothness in the viscosity of solutions of nonlinear differential equations in a Banach space
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin
readings – XXX”.
Voronezh, May 3-9, 2019. Part 4
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 193
\pages 99--103
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into803}
\crossref{https://doi.org/10.36535/0233-6723-2021-193-99-103}
Linking options:
  • https://www.mathnet.ru/eng/into803
  • https://www.mathnet.ru/eng/into/v193/p99
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:251
    Full-text PDF :104
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026