Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 194, Pages 124–143
DOI: https://doi.org/10.36535/0233-6723-2021-194-124-143
(Mi into822)
 

Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility

V. A. Kyrov

Gorno-Altaisk State University
References:
Abstract: In modern geometry, the study of the geometries of maximum mobility is of great importance. Some of these geometries are well studied (for example, the Euclidean and Lobachevsky geometries, pseudo-Euclidean, symplectic, spherical geometry, etc.), while others (for example, Helmholtz and pseudo-Helmholtz geometries) have not yet attracted active attention of researchers. There is still no complete classification of the geometries of maximum mobility. In this work, we present some results concerning the classification problem for two- and three-dimensional geometries of local maximum mobility. This problem is reduced to functional equations of a special form and is solved by the embedding method in the class of analytic functions.
Keywords: geometry of maximum mobility, motion group, functional equation.
Document Type: Article
UDC: 514.1,517.912
MSC: 53D05,39B22
Language: Russian
Citation: V. A. Kyrov, “Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 194, VINITI, Moscow, 2021, 124–143
Citation in format AMSBIB
\Bibitem{Kyr21}
\by V.~A.~Kyrov
\paper Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin
readings – XXX”.
Voronezh, May 3-9, 2019. Part 5
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 194
\pages 124--143
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into822}
\crossref{https://doi.org/10.36535/0233-6723-2021-194-124-143}
Linking options:
  • https://www.mathnet.ru/eng/into822
  • https://www.mathnet.ru/eng/into/v194/p124
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025