Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find







Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 195, Pages 44–50
DOI: https://doi.org/10.36535/0233-6723-2021-195-44-50
(Mi into831)
 

Goursat problem for a singular integro-functional-differential composite equation

A. N. Zarubin

Orel State University named after I. S. Turgenev
References:
Abstract: We examine the Goursat problem for a composite equation with functional non-Carleman shifts of leading and retarded types in the singular integral operator and in the d'Alembert-type operator. We prove that the problem is uniquely solvable in the class of twice continuously differentiable solutions.
Keywords: composite equation, functional shift, singular integral equation, Goursat problem.
Document Type: Article
UDC: 517.956.6
MSC: 39B99
Language: Russian
Citation: A. N. Zarubin, “Goursat problem for a singular integro-functional-differential composite equation”, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 195, VINITI, Moscow, 2021, 44–50
Citation in format AMSBIB
\Bibitem{Zar21}
\by A.~N.~Zarubin
\paper Goursat problem for a singular integro-functional-differential composite equation
\inbook Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 195
\pages 44--50
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into831}
\crossref{https://doi.org/10.36535/0233-6723-2021-195-44-50}
Linking options:
  • https://www.mathnet.ru/eng/into831
  • https://www.mathnet.ru/eng/into/v195/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :61
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025