Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 195, Pages 75–80
DOI: https://doi.org/10.36535/0233-6723-2021-195-75-80
(Mi into835)
 

On Kravchenko's method for solving the inverse Sturm–Liouville problem for nonsmooth potentials

S. V. Pisareva

Voronezh State University of Forestry and Technologies named after G.F. Morozov
References:
Abstract: In this paper, we propose a method for solving the inverse Sturm–Liouville problem on a finite segment for the case of nonsmooth coefficients based on the Gelfand–Levitan equation and the representation of the kernel of the transformation operator in the series form.
Keywords: inverse Sturm–Liouville problem, Gelfand–Levitan equation, kernel of the transformation operator.
Document Type: Article
UDC: 517.9
MSC: 34B24
Language: Russian
Citation: S. V. Pisareva, “On Kravchenko's method for solving the inverse Sturm–Liouville problem for nonsmooth potentials”, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 195, VINITI, Moscow, 2021, 75–80
Citation in format AMSBIB
\Bibitem{Pis21}
\by S.~V.~Pisareva
\paper On Kravchenko's method for solving the inverse Sturm--Liouville problem for nonsmooth potentials
\inbook Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 195
\pages 75--80
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into835}
\crossref{https://doi.org/10.36535/0233-6723-2021-195-75-80}
Linking options:
  • https://www.mathnet.ru/eng/into835
  • https://www.mathnet.ru/eng/into/v195/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :56
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025