Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 195, Pages 139–141
DOI: https://doi.org/10.36535/0233-6723-2021-195-139-141
(Mi into842)
 

Solution of a second-kind integro-functional Abel equation

E. Chaplygina

Orel State University named after I. S. Turgenev
References:
Abstract: We examine an integro-functional equation with a weakly polar integral operator with non-Carleman shifts of retarded and advancing type. The unique solvability of the problem is proved.
Keywords: Abel equation, matrix equation, mutually inverse diffeomorphisms.
Document Type: Article
UDC: 517.956.6
MSC: 39B05
Language: Russian
Citation: E. Chaplygina, “Solution of a second-kind integro-functional Abel equation”, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 195, VINITI, Moscow, 2021, 139–141
Citation in format AMSBIB
\Bibitem{Cha21}
\by E.~Chaplygina
\paper Solution of a second-kind integro-functional Abel equation
\inbook Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 195
\pages 139--141
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into842}
\crossref{https://doi.org/10.36535/0233-6723-2021-195-139-141}
Linking options:
  • https://www.mathnet.ru/eng/into842
  • https://www.mathnet.ru/eng/into/v195/p139
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025