Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 195, Pages 142–156
DOI: https://doi.org/10.36535/0233-6723-2021-195-142-156
(Mi into843)
 

Examples of integrable dynamical systems of arbitrary odd order with dissipation

M. V. Shamolin

Lomonosov Moscow State University
References:
Abstract: In this paper, we prove the integrability of some classes of odd-order homogeneous (in some variables) dynamical systems that admit extracting a system on the tangent bundle to a smooth manifold.
Keywords: dynamical system, nonconservative force field, integrability, transcendental first integral.
Document Type: Article
UDC: 517, 531.01
MSC: 58-xx, 70-xx
Language: Russian
Citation: M. V. Shamolin, “Examples of integrable dynamical systems of arbitrary odd order with dissipation”, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 195, VINITI, Moscow, 2021, 142–156
Citation in format AMSBIB
\Bibitem{Sha21}
\by M.~V.~Shamolin
\paper Examples of integrable dynamical systems of arbitrary odd order with dissipation
\inbook Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 195
\pages 142--156
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into843}
\crossref{https://doi.org/10.36535/0233-6723-2021-195-142-156}
Linking options:
  • https://www.mathnet.ru/eng/into843
  • https://www.mathnet.ru/eng/into/v195/p142
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025