Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 196, Pages 3–14
DOI: https://doi.org/10.36535/0233-6723-2021-196-3-14
(Mi into844)
 

Investigation of Beltrami fields by methods of integral geometry

A. L. Balandin

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
References:
Abstract: In this paper, we propose a tomographic method for studying linear Beltrami fields in a bounded domain of space based on the expansion of vector fields and their ray transforms by basic vector functions. In addition, we develop a numerical algorithm and present the results of numerical simulation.
Keywords: inverse problem, Beltrami field, ray transform, vector spherical harmonic.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-8081.2016.9
This work was supported by the Grant Council of the President of the Russian Federation for State Support of Leading Scientific Schools (project NSh-8081.2016.9).
Document Type: Article
UDC: 517.444, 519.654
MSC: 65R30, 65R32, 65Z05
Language: Russian
Citation: A. L. Balandin, “Investigation of Beltrami fields by methods of integral geometry”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 196, VINITI, Moscow, 2021, 3–14
Citation in format AMSBIB
\Bibitem{Bal21}
\by A.~L.~Balandin
\paper Investigation of Beltrami fields by methods of integral geometry
\inbook Differential Equations and Optimal Control
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 196
\pages 3--14
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into844}
\crossref{https://doi.org/10.36535/0233-6723-2021-196-3-14}
Linking options:
  • https://www.mathnet.ru/eng/into844
  • https://www.mathnet.ru/eng/into/v196/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025