Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 197, Pages 108–116
DOI: https://doi.org/10.36535/0233-6723-2021-197-108-116
(Mi into867)
 

Uniform space and its hyperspace

R. B. Beshimov, D. T. Safarova

National University of Uzbekistan named after Mirzo Ulugbek
References:
Abstract: In this paper, we examine some topological properties of uniform spaces and their hyperspaces. We prove that a uniform space $(X,\mathscr{U})$ is uniformly precompact if and only if $ (\exp_{c}X, \exp_{c}\mathscr{U})$ is uniformly precompact. Also we prove that the uniform hyperspace $(\exp_{c}X, \exp_{c} \mathscr{U})$ preserves uniformly local compactness, uniform connection, uniform paracompactness, and uniform $R$-paracompactness.
Keywords: uniform space, uniformity, uniformly connected space, uniformly paracompact space, uniformly $R$-paracompact space.
Document Type: Article
UDC: 515.12
Language: Russian
Citation: R. B. Beshimov, D. T. Safarova, “Uniform space and its hyperspace”, Geometry and topology, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 197, VINITI, Moscow, 2021, 108–116
Citation in format AMSBIB
\Bibitem{BesSaf21}
\by R.~B.~Beshimov, D.~T.~Safarova
\paper Uniform space and its hyperspace
\inbook Geometry and topology
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 197
\pages 108--116
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into867}
\crossref{https://doi.org/10.36535/0233-6723-2021-197-108-116}
Linking options:
  • https://www.mathnet.ru/eng/into867
  • https://www.mathnet.ru/eng/into/v197/p108
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:243
    Full-text PDF :202
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026