Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 198, Pages 80–88
DOI: https://doi.org/10.36535/0233-6723-2021-198-80-88
(Mi into877)
 

An analog of Bernstein's inequality for fractional $B$-derivatives of Schlemilch $j$-polynomials in weighted function classes

L. N. Lyakhovab, E. Saninaa

a Voronezh State University
b Lipetsk State Pedagogical University
References:
Abstract: The $B$-derivative defined by generalized displacements coincides with the singular Bessel differential operator up to a constant. Similarly to the Riemann–Liouville, Marchot, and Weil fractional derivatives, we introduce fractional powers of the $B$-derivative and prove that these derivatives coincide on the corresponding functional classes. Also, we prove Bernstein's inequalities for the $B$-derivative and fractional $B$-derivative of even Schlemilch $j$-polynomials in the classes of continuous and Lebesgue-measurable functions.
Keywords: $j$-Bessel functions; generalized Poisson distribution; fractional derivatives of Liouville, Marchot, Weil; Riesz interpolation formula; Schlemilch polynomial; Stepanov space generated by a generalized shift; Bernstein–Zygmund inequality.
Document Type: Article
UDC: 517.9
MSC: 33C10, 41A05
Language: Russian
Citation: L. N. Lyakhov, E. Sanina, “An analog of Bernstein's inequality for fractional $B$-derivatives of Schlemilch $j$-polynomials in weighted function classes”, Differential Equations and Mathematical Physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 198, VINITI, Moscow, 2021, 80–88
Citation in format AMSBIB
\Bibitem{LyaSan21}
\by L.~N.~Lyakhov, E.~Sanina
\paper An analog of Bernstein's inequality for fractional $B$-derivatives of Schlemilch $j$-polynomials in weighted function classes
\inbook Differential Equations and Mathematical Physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 198
\pages 80--88
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into877}
\crossref{https://doi.org/10.36535/0233-6723-2021-198-80-88}
Linking options:
  • https://www.mathnet.ru/eng/into877
  • https://www.mathnet.ru/eng/into/v198/p80
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :80
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025