Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 198, Pages 133–137
DOI: https://doi.org/10.36535/0233-6723-2021-198-133-137
(Mi into883)
 

This article is cited in 1 scientific paper (total in 1 paper)

Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator

B. I. Efendiev

Institute of Applied Mathematics and Automation, Nalchik
Full-text PDF (190 kB) Citations (1)
References:
Abstract: In this paper, we prove an analog of the Lyapunov inequality for the Dirichlet problem for an ordinary differential equation with the continuously distributed integration operator.
Keywords: Lyapunov inequality, Dirichlet problem, operator of continuously distributed integration, Riemann–Liouville fractional integral, Riemann–Liouville fractional derivative.
Document Type: Article
UDC: 517.925.4
MSC: 34B05
Language: Russian
Citation: B. I. Efendiev, “Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator”, Differential Equations and Mathematical Physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 198, VINITI, Moscow, 2021, 133–137
Citation in format AMSBIB
\Bibitem{Efe21}
\by B.~I.~Efendiev
\paper Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator
\inbook Differential Equations and Mathematical Physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 198
\pages 133--137
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into883}
\crossref{https://doi.org/10.36535/0233-6723-2021-198-133-137}
Linking options:
  • https://www.mathnet.ru/eng/into883
  • https://www.mathnet.ru/eng/into/v198/p133
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:167
    Full-text PDF :92
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026