Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 200, Pages 95–104
DOI: https://doi.org/10.36535/0233-6723-2021-200-95-104
(Mi into905)
 

This article is cited in 1 scientific paper (total in 1 paper)

Solvability of the mixed problem for a hyperbolic equation in the case of incomplete system of eigenfunctions

V. S. Rykhlov

Saratov State University
Full-text PDF (235 kB) Citations (1)
References:
Abstract: A mixed problem for a second-order hyperbolic equation with constant coefficients and a mixed partial derivative is considered. We assume that the roots of the characteristic equation are simple and lie on the positive half-line. The coefficients of the equation and the boundary data are constrained by conditions such that the two-fold completeness of eigenfunctions of the corresponding spectral problem for the differential quadratic pencil is absent. The Poincaré–Cauchy contour integral method is used to obtain various sufficient conditions for the solvability of this problem.
Keywords: mixed problem, hyperbolic equation, eigenfunction, two-fold incompleteness, two-fold expansion, irregular operator pencil, differential pencil, method of contour integral, Poincaré–Cauchy method.
Document Type: Article
UDC: 517.958, 517.927.25
MSC: 35L20,35P10
Language: Russian
Citation: V. S. Rykhlov, “Solvability of the mixed problem for a hyperbolic equation in the case of incomplete system of eigenfunctions”, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 200, VINITI, Moscow, 2021, 95–104
Citation in format AMSBIB
\Bibitem{Ryk21}
\by V.~S.~Rykhlov
\paper Solvability of the mixed problem for a hyperbolic equation in the case of incomplete system of eigenfunctions
\inbook Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 200
\pages 95--104
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into905}
\crossref{https://doi.org/10.36535/0233-6723-2021-200-95-104}
Linking options:
  • https://www.mathnet.ru/eng/into905
  • https://www.mathnet.ru/eng/into/v200/p95
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025