Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 203, Pages 130–138
DOI: https://doi.org/10.36535/0233-6723-2021-203-130-138
(Mi into935)
 

Structural equations of the Cartan connection with the curvature-torsion quasi-tensor

Yu. I. Shevchenko, E. V. Skrydlova

Immanuel Kant Baltic Federal University, Kaliningrad
References:
Abstract: Using a two-tier principal connection, we construct an interpretation of the Cartan connection, which is not a connection in the principal bundle, and obtain its structural equations in two forms. We prove that in the classical structural equations, the curvature-torsion object is a tensor, which becomes a quasi-tensor under reduction of the equations.
Keywords: principal bundle, extended principal bundle, Laptev's lemma, semiholonomy, principal connection, Cartan–Laptev theorem, curvature tensor, gluing, Cartan's connection, curvature-torsion tensor.
Document Type: Article
UDC: 514.76
MSC: 53B15, 58A15
Language: Russian
Citation: Yu. I. Shevchenko, E. V. Skrydlova, “Structural equations of the Cartan connection with the curvature-torsion quasi-tensor”, Geometry, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 203, VINITI, Moscow, 2021, 130–138
Citation in format AMSBIB
\Bibitem{SheSkr21}
\by Yu.~I.~Shevchenko, E.~V.~Skrydlova
\paper Structural equations of the Cartan connection with the curvature-torsion quasi-tensor
\inbook Geometry
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 203
\pages 130--138
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into935}
\crossref{https://doi.org/10.36535/0233-6723-2021-203-130-138}
Linking options:
  • https://www.mathnet.ru/eng/into935
  • https://www.mathnet.ru/eng/into/v203/p130
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025