Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 204, Pages 124–134
DOI: https://doi.org/10.36535/0233-6723-2022-204-124-134
(Mi into948)
 

This article is cited in 3 scientific papers (total in 3 papers)

Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions

V. S. Rykhlov

Saratov State University
Full-text PDF (244 kB) Citations (3)
References:
Abstract: In this paper, we consider a mixed problem for a second-order hyperbolic equation with constant coefficients and a mixed partial derivative. We assume that the boundary conditions are splitted (i.e., one condition is posed at the left endpoint of the main interval and the other at the right endpoint) and the roots of the characteristic equation are simple and lie on the positive half-line. The coefficients of the equation and the boundary conditions are constrained by conditions that guarantee the absence of the two-fold completeness of eigenfunctions of the corresponding spectral problem for the differential quadratic pencil. Using the Poincaré–Cauchy contour integral method, we to obtain sufficient conditions for the solvability of this problem.
Keywords: mixed problem, hyperbolic equation, existence of solutions, solvability of mixed problem, splitting boundary conditions, constant coefficients, eigenfunctions, two-fold incompleteness, two-fold expansion, irregular operator pencil, differential pencil, contour integral method, Poincaré–Cauchy method.
Document Type: Article
UDC: 517.958, 517.927.25
MSC: 35L20,35P10
Language: Russian
Citation: V. S. Rykhlov, “Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions”, Proceedings of the Voronezh spring mathematical school  "Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI". Voronezh, May 3-9, 2020, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204, VINITI, Moscow, 2022, 124–134
Citation in format AMSBIB
\Bibitem{Ryk22}
\by V.~S.~Rykhlov
\paper Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions
\inbook Proceedings of the Voronezh spring mathematical school 
"Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI".
Voronezh, May 3-9, 2020
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 204
\pages 124--134
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into948}
\crossref{https://doi.org/10.36535/0233-6723-2022-204-124-134}
Linking options:
  • https://www.mathnet.ru/eng/into948
  • https://www.mathnet.ru/eng/into/v204/p124
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025