Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 204, Pages 135–145
DOI: https://doi.org/10.36535/0233-6723-2022-204-135-145
(Mi into949)
 

Contact problem for a second-order parabolic equation with Dini-continuous coefficients

S. I. Saharovab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: We consider a contact problem for second-order parabolic equations with Dini-continuous coefficients in a strip divided by a nonsmooth curve into two domains. The existence and uniqueness of a regular solution to this problem is proved.
Keywords: parabolic contact problem, parabolic equation with discontinuous coefficients, method of boundary integral equations, simple layer potential.
Document Type: Article
UDC: 517.956.4
MSC: 35A01
Language: Russian
Citation: S. I. Saharov, “Contact problem for a second-order parabolic equation with Dini-continuous coefficients”, Proceedings of the Voronezh spring mathematical school  "Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI". Voronezh, May 3-9, 2020, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204, VINITI, Moscow, 2022, 135–145
Citation in format AMSBIB
\Bibitem{Sah22}
\by S.~I.~Saharov
\paper Contact problem for a second-order parabolic equation with Dini-continuous coefficients
\inbook Proceedings of the Voronezh spring mathematical school 
"Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI".
Voronezh, May 3-9, 2020
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 204
\pages 135--145
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into949}
\crossref{https://doi.org/10.36535/0233-6723-2022-204-135-145}
Linking options:
  • https://www.mathnet.ru/eng/into949
  • https://www.mathnet.ru/eng/into/v204/p135
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025